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ABSTRACT 

This study aims to develop a regional burned area (BA) algorithm for Landsat surface 

reflectance (SR) images by testing different machine learning (ML) algorithms. Three 

ML algorithms (RF, XGB, MARS) were fed and tuned by using more than 1 million of 

spectral signatures of BA and anthropic land-uses from a balanced dataset. As 

predictors, we used both SR bands and spectral indexes. Different combinations of 

hyperparameters were tested, being the optimal values selected by using the largest 

accuracy. RF overcome XGB and MARS, presenting a balanced accuracy of 98%. 

Validation was made by using the RF model to predict 59 scenes. RF model alone was 

not sufficient to generate a BA product with suitable quality (kappa= 0.53), thus, post-

processing was implemented. Higher accuracy (kappa= 0.79) was obtained by 

combining infrastructure and terrain masks with a spatial contiguity filter. Balancing of 

errors prioritized a higher omission (OE= 0.16) than commission (0.09), guarantying 

that this product can be applied to perform regional analysis without overestimating the 

BA. Finally, this study launches the first Cerrado’s collaborative burned area mapping 

platform, a simple and intuitive way to share the result with the community and take 

feedbacks to improve the product quality in the future. 

Key- words: burned area; random forest; Landsat; landscape; land-cover; land-use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

The Cerrado vegetation covers an area of c.a 2 million km², about 25% of 

Brazilian territory (Durigan & Ratter, 2016). The Cerrado, the largest South American 

savanna, evolved under natural fire regimes (Simon et al., 2009). However, 

contemporary fire regimes are highly affected by  the established settlements, 

managing landscape for agriculture and livestock, thus changing the natural fire 

regimes according with to the local cultural and economic practices (Dias, 2006). These 

changes in natural fire regimes can completely alter the ecosystem’s structure, 

composition and functionality. Increasing fire frequency is often related to the 

conversion of savannas into pastures for cattle grazing and opening of new croplands 

such as soybean or sugar cane (Daldegan et al., 2014), while decreasing fire frequency 

is specially observed in areas with woody encroachment (Rosan et al., 2019).  

Currently, 93% of the entire Cerrado is under an anthropic matrix (Soares-Filho 

et al., 2014) covered mainly by agriculture, livestock and forestry (Alencar et al., 2020). 

In the state of São Paulo, anthropic land-use is observed in more than 95% of the 

Cerrado’s original cover (Kronka et al., 2005). The presence of highly populated cities 

(Σ= 44 million inhabitants (IBGE, 2014) and dense infra-structure (eg. roads, railways, 

power transmission lines and telecommunication towers) are added to the Cerrado of 

São Paulo’s landscape, increasing its complexity. For this reason, fire has been 

considered as a destructive force and legally banned (State Law 10 547/ 2001) to 

decrease fire use and mitigate its impacts on human populations. Despite the Cerrado 

being a fire prone ecosystem, private companies and government agencies maintain 

fire brigades to extinguish any fire occurrence, not mattering its cause or location 

(Durigan & Ratter, 2016).  

When monitoring fire regime changes it is important to track where, when and 

how much vegetation is being affected by fire, ensuring that spatial features of the fire 

regime can be assessed on fire policy reviews and included on future studies of 

modeling, species distribution, botany, etc. Current Remote Sensing products derived 

from MODIS have been showing good results in evaluating natural and anthropic 

processes affecting land surface, allowing the global detection of active fires (Active 

Fire Data | MCD14DL, 1 x 1 km) and burn scars (LP DAAC - MCD64A1, 500 x 500m) 

since the 2000’s. However, these products are not suitable to analyze regional and 

local patterns due to their low spatial resolution, especially in highly fragmented 



landscapes such as the state of São Paulo. The program “INPE Queimadas” produced 

burned area products based on Landsat images (AQM30, 30 x 30 m) for the entirety of 

Cerrado, but these products have not advanced beyond the beta phase and are limited 

to the 2011-2018 period, leaving a gap for the reconstruction of larger and more reliable 

fire regime historical series.  

Traditional methods for time-series burned area classification by using moderate 

resolution sensors (like Landsat) are mainly based on reflectance ratios between fire 

sensitive bands (NIR, SWIR1, SWIR2) and spectral index variations (NBR, CSI, NDVI) 

(Bastarrika et al., 2014; Hawbaker et al., 2017; Koutsias & Karteris, 2000). These 

approaches present satisfactory results on homogeneous landscapes, but accuracy 

errors are not balanced to consider open and heterogeneous landscapes like the 

Cerrado. When considering highly managed landscapes exposed to constant land-use 

and land-cover changes (LULCC) the accuracy is highly compromised, making these 

products not suitable to assess ecosystem fire regime features.   

Recent advancements on machine learning algorithms and open source 

libraries present a new opportunity to explore potential applications on automated and 

semi-automated burned area mapping (A. Pereira et al., 2017; Ramo & Chuvieco, 

2017). Thus, we tested potential applications of different machine learning algorithms 

(eXtreme Gradient Boosting, Multivariate Adaptive Regression Spline, Random Forest) 

to reconstruct the contemporary fire regime of São Paulo’s Cerrado by using Landsat 

time-series data (TM, ETM+, OLI). We trained and tuned classification models by using 

spectral signatures of burned areas and LULCC’s from six Cerrado’s protected areas 

and their respective buffer zones (7 km). By using the largest accuracy value to select 

the optimal model, we applied it into a dense Landsat time-series and generated a 

standardized burned area product from 1985 to 2018 for the highly anthropized 

Cerrado. We performed the validation of this product by considering an independent 

multi-temporal burned area dataset and an adaptative post-processing routine.  

Before beginning, we theorized: i) tuning the hyperparameters will affect the 

accuracy performance; ii) random forest and extreme gradient boosting will outperform 

multivariate adaptive regression spline; iii) mask of some LULCCs will be need to reach 

an acceptable product quality; iv) the final will be of sufficient quality to carry out 

environmental analysis on regional scale.    

2. Methods 



2.1. Study area 

We focused on generating an accurate burned area product for highly 

anthropized Cerrado considering the São Paulo state land cover context. For this, we 

selected 9 WRS Landsat paths/rows covering an area of 228 776 km² (Figure 1). Parts 

of other states were included when sharing the same scene as our target sites. Thus, 

the total covered area by this study can be divided into 69% covering São Paulo state, 

15% southern Minas Gerais state, 14% northern Paraná state and 2% Atlantic Ocean, 

the last covering small islands on São Paulo’s coast. 

 

Figure 1. Study area covered by Landsat Burned Area product for the Cerrado of São Paulo 

state  

The population for the study area was estimated around 38,3 million inhabitants 

in the 2010 census, distributed along 487 municipalities, representing almost 87% of 

São Paulo’s state population and 20% of Brazil’s population (IBGE, 2014).  São Paulo 

presents the highest GDP (Gross Domestic Product) from Brazil, where the countryside 

is responsible by primary production (mainly sugar-cane, soybean, coffee and forestry) 

while the main cities rely heavily on services and heavy industries, concentrating a high 

population compared to neighboring cities (IBGE, 2014).  



Remnants of primary native vegetation in São Paulo state are characterized by 

15.7% total state area of Atlantic Rainforest and ~1% of Cerrado (Atlântica, 2017). 

These native remnants of both vegetation types are highly fragmented and these 

patches are located mainly in protected areas (Kronka et al., 2005). The Cerrado 

remnants are mainly dominated by forest-like formations (locally known as “cerradão”), 

and only very few areas of open physiognomies (locally known as “campo limpo”, 

“campo sujo”), which are extremely rare and restricted to small patches into the 

anthropized matrix of the countryside (Vicente et al., 2005).  

2.2. Algorithm workflow  

We developed an automatic algorithm to detect burned areas in the highly 

anthropized Cerrado. First, we trained different classification models based on machine 

learning algorithms and assessed prediction performance of each one by using the 

balanced accuracy and kappa index. Second, the best fitted model was applied to 

classify a dense Landsat time-series. Finally, we balanced commission and omission 

errors in the burned area to ensure that the final product can be used to perform 

regional scale analysis. All the processing steps briefly described in this section were 

represented in the Figure 2 and will be detailed in the following sections.  

 



Figure 2. Algorithm graphical abstract. Blue boxes show a set of one-step processes. Red 

labels show step titles. Gray boxes represent each individual process. Black bold labels inner 

gray boxes show start/end processes from a step. Black solid arrow points primary flux of 

processes, while gray arrow indicates secondary processes that occur in the background and 

feed primary processes. Gray labels offer a short description in specific boxes. Black bold 

labels outside gray boxes points selected parameters/setup. Blue labels points file extensions 

expected as input and exported as output. 

All processing steps were parallelized to take advantage of multicore CPUs and 

made using R (RCT, 2020). Specific key-steps were accomplished by using community 

packages “caret”, “raster” and “rgdal” (Bivand et al., 2015; Hijmans & van Etten, 2012; 

Kuhn & Johnson, 2013) and jscript implementations into Google Earth Engine. Source 

codes are available and can be accessed in GitHub 

(https://github.com/musx/FireLand_SPv1). The computation infrastructure used was 

core i7 5820K 3.3 GHz CPU, 64GB RAM and a GTX 1060 6GB GPU. 

2.3. Building the spectral library 

We previously selected training sites that contain representative sample areas 

of native vegetation remnants and anthropic land uses. These sites correspond to six 

protected areas being three of full preservation (Assis, Santa Bárbara and Itirapina 

Ecological Stations) and three of sustainable use (Assis, Santa Bárbara and Itirapina 

State Forests).  We also considered buffer zones of 7 kilometers around each one of 

these protected areas. A highly accurate and manual burn scar mapping dataset was 

already available for these areas from 1984 to 2016 (Conciani et al in press). This 

previous mapping was performed based on visual detection and manual delineation of 

every burn scar detected into 805 Landsat surface reflectance Level-2 scenes from 

Earth Resources Observation and Science- Center Science Processing Architecture 

(EROS-ESPA, https://espa.cr.usgs.gov/) for the WRS path/rows 220/75, 221/76, 

222/76.  

In order to create a diverse spectral library, we mapped samples over time of 

land uses with similar spectral signature when compared to burn scars (Table 1). 

Furthermore, spectral signature of generic land covers (e.g. “green cover”, “bare soil”) 

was also mapped in order to train a landscape classifier with ability to recognize burn 

scars on highly anthropized areas. 

Table 1. Mapped classes to train classification models. A byte value was assigned for each 

class in order to identify these elements in further proceedings. 

https://github.com/musx/FireLand_SPv1
https://espa.cr.usgs.gov/


Byte Class Description 

1 Burned area Recently burned area, with ash presence 

2 Bare soil Soil without any type of vegetation cover 

3 Green cover Any type of green cover, forests, agriculture, pastures 

4 Gray concrete Impermeable structures, cities 

5 Harvest Recent harvest with the presence of decomposing organic matter atop the soil 

6 Asphalt Highways and paved streets 

7 Shadow Cloud and relief shadows 

8 Water Natural/ artificial water courses and water masses 

We performed the spectral signature extraction from surface reflectance bands 

(Table 2) that matches between the mapped vectors by class and the Landsat images 

for each date. The data extracted in the process was compiled and exported as a 

database, being used to build our spectral library. A graphical summary of the spectral 

library is presented in the Figure 3 considering the mean reflectance value for each 

one of the classes. 

Table 2. Surface reflectance spectral bands used to extract spectral signatures. TM = Thematic 

Mapper (Landsat 5); ETM+ = Enhanced Thematic Mapper Plus (Landsat 7); OLI = Operational 

Land Imager (Landsat 8). 

Spectral band Landsat TM and ETM+ Landsat OLI 

Band number Bandwidth (µm) Band number Bandwidth (µm) 

Blue 1 0.45 - 0.52 2 0.45 - 0.51 

Green 2 0.52 - 0.60 3 0.52 - 0.60 

Red 3 0.63 - 0.69 4 0.63 - 0.69 

NIR 4 0.77 - 0.90 5 0.77 - 0.90 

SWIR1 5 1.55 - 1.75 6 1.55 - 1.75 

SWIR2 7 2.09 - 2.35 7 2.09 - 2.35 

 

Figure 3. Mean reflectance (y-axis) over the wavelengths (x-axis) from each class present in 

our spectral library. Line colors represent different classes (described on legend). Background 



colors represent Landsat bands ordered by wavelength (Blue, Green, Red, NIR, SWIR1 and 

SWIR2).   

Finally, we used these surface reflectance database as input for the generation 

of several spectral indices (Table 3). We selected some of the most commonly used 

indexes in the literature to assess features from the burn scars, vegetation, soil and 

water, and included them in our spectral library.  

Table 3. Spectral indexes generated to enhance our spectral library. The λ symbol represents 

the reflectance value of the spectral band. 

Spectral Index                Reference Formula 

Burned Area Index (BAIM) (Martín & Chuvieco, 2006) 
1

(0.05 − λ NIR)2 + (0.2 − λ SWIR1)²
 

Char Soil Index (CSI) (Alistair M.S. Smith et al., 2005)  
λ NIR

λ SWIR1
 

Green Normalized Difference 

Vegetation Index (GNDVI) 
(Gitelson et al., 1996) 

λ NIR − λ Green

λ NIR + λ Green
 

Infrared Index (IRI) (Hardisky et al.,1983) √
λ NIR2 + λ SWIR2

λ SWIR1
 

Mid-Infrared Bispectral Index 

(MIRBI) 
(Trigg & Flasse, 2001) 10 × λ SWIR1 − 9.8 × λ NIR + 2 

Modified Soil Adjusted 

Vegetation Index (MSAVI) 
(Qi et al., 1994) 

λ NIR + 0.5 − (0.5

× √(2 × λ NIR + 1)2 − 8 × λ NIR − (2 × λ Red) 

Normalized Burn Ratio (NBR) (Key & Benson, 2006) 
λ NIR − λ SWIR1

λ NIR +  λ SWIR 1
 

Normalized Difference 

Vegetation Index (NDVI) 
(Rouse et al., 1974) 

λ NIR −  λ Red

λ NIR +  λ Red
 

Normalized Difference Water 

Index (NDWI) 
(Gao, 1996) 

λ Green −  λ NIR

λ Green +  λ NIR
 

Salinity Index 2 (S2) (Douaoui et al., 2006) 
λ Blue −  λ Red

λ Blue +  λ Red
 

Specific Leaf Area Vegetation 

Index (SLAVI) 
(Lymburner et al., 2000) 

λ NIR

λ Red +  λ SWIR2
 

A Spearman’s correlation map was computed (Figure 4) to inspect the 

relationships between the surface reflectance bands and the generated spectral 

indexes.    

 

 

 

 



 

Figure 4. Correlation map between the surface reflectance bands and the spectral indexes in 

our spectral library.  Right bar color vary between strong negative correlations (red) to strong 

positive correlations (green). Black number inside each square shows de Spearman’s 

correlation (positive or negative). 

2.4. Pre-processing 

We computed a count of spectral signatures for each class in our spectral 

library and plotted them into a histogram (Figure 5A). We detected unbalanced 

observations per class on our database. As a remedy to prevent learning bias, we 

artificially balanced the frequencies by using the burned area as reference and 

performing a random down-sampling for classes with higher frequency than the 

reference (ignoring cases from the majority) and an up-sampling for classes with less 

frequency than the reference (replicating cases from the minority) (Figure 5B). Thus, 

we generated a balanced dataset containing 1,153,040 spectral signatures, being 

144,130 (12.5%) of each class. This balancing strategy is described in the literature as 

an alternative to prevent the learning overwhelm by the majority classes (Guo et al., 

2008; Provost, 2000). Furthermore, more accurate performances were reported to 

classifiers trained with balanced datasets when comparing them to classifiers trained 

with the original data (Batista et al., 2004; Jeatrakul et al., 2010; Van Hulse et al., 2007) 



 

Figure 5. Histogram of frequencies by class. A. Original dataset. Red line indicates burned 

area frequency used as reference to balance other classes. Green arrows points if an up-

sampling (up arrow) or down-sampling (down arrow) were performed to balance each class. 

B. Balanced dataset after up-sampling and down-sampling. 

Following the most common proportions reported in the literature (Kuhn & 

Johnson, 2013), we divided the balanced dataset into training dataset by creating a 

stratified partition with 70% of the data and an test dataset by using the 30% of the 

remaining data. We centered and scaled the numeric data to take standard deviation 

one and mean of zero for all the predictors.  

2.5. Model training and testing 

Using the training dataset as input, we implemented machine learning 

algorithms considering the scope of non-parametric regressions (Multivariate Adaptive 

Regression Spline - MARS), decision trees (Random Forest – RF) and boosted trees 

(eXtreme Gradient Boosting – XGB). Each one of these algorithms have specific 

parameters that affects the model’s accuracy and which cannot be estimated by using 

the dataset (Table 4). Since there is no analytical formula available to calculate an 

appropriate value, these parameters are referred as tuning parameters or 

hyperparameters. Since these hyperparameters control the model complexity, poor 

choices for the inputted values can result in low accuracy or over-fitting (Kuhn & 

Johnson, 2013). In this way, following the adaptative search method described in 

Olsson & Nelson, 1975, we defined a set of candidate values for each hyperparameter 

(Table 4). Finally, to avoid the over-fitting, we used the k-fold cross-validation 

resampling technique (k= 5, repeats =3) for training and estimating the performance of 

the models by considering all the possible combinations between the candidate values.   

Table 4. Hyperparameters description for each algorithm. Numbers following the names of the 

algorithms refer to the version of the R package that has been implemented. The range column 

represent the minimum and maximum allowed values for each hyperparameter. The candidate 



values column represents the set of values that we used as input to train and evaluate different 

models accuracy.  

Algorithm Hyperparameter Description Range Candidate values 

earth 5.1.2 degree Product degree 1 – Inf 1 – 3 

 nprune Number of terms 1 – Inf 1 – 20 

RandomForest 
4.6-14 

ntree Number of trees to grow 1 – Inf 1 – 750 

 mtry Number of variables randomly 

sampled as candidates at each split 

1 – n(β) 2 – 8 

xgboost 
0.90.0.2 

nrounds Number of boosting iterations 1 – Inf 50 –150 

 max_depth Max tree depth 0 – Inf 1 – 3 

 eta Shrinkage 0 – 1 0.3 – 0.4 

 gamma Minimum loss reduction 0 – Inf D0 

 subsample Subsample percentage 0 – 1 0.5 – 1 

 colsample_bytree Subsample ratio of columns 0 – 1 0.6 – 0.8 

 min_child_weigth Minimum sum of instance weight 0 – Inf D1 

Inf = Infinite; n(β) = number of predictors; D0, 1 = default hyperparameter value (0 and 1 respectively) 

We computed and used the largest values of overall accuracy (ACC – eq. 1) 

and the Cohen’s Kappa index (Kappa – eq. 2) obtained in the training by the k-fold 

cross validation to select the best values for the hyperparameters as well as the optimal 

model trained by each algorithm. Then, we used these three finalist models (one by 

algorithm) to predict the test dataset and assessed the performance of each one by 

computing a confusion matrix comparing the predicted classes vs. reference classes. 

Once again, we used the largest accuracy value obtained by the test dataset 

classification to select the final model used in this article.    

ACC =
∑ TP + ∑ TN

n
 

eq.1 
TP= true positive; TN= true negative; n= total population 

Kappa

=
 [

 (∑ TP + ∑ TN) − ((∑ TP + ∑ FN) × (∑ TP + ∑ FP) + (∑ FP + ∑ TN) × (∑ FN + ∑ TN))
n ⁄ ]

 [
 n − ((∑ TP + ∑ FN) × (∑ TP + ∑ FP) + (∑ FP + ∑ TN) × (∑ FN + ∑ TN))

n ⁄ ]
 

eq.2 
FN= false negative; FP = false positive  

2.6. Burned area extraction into a dense time-series 

Considering the study site extension, we retrieved the metadata for all the 

available Landsat scenes from Earth Explorer (https://earthexplorer.usgs.gov/). 

Assessing scene availability according cloud cover percentage (Supplementary Fig 

https://earthexplorer.usgs.gov/


S1), we found that a maximum of 75% cloud cover is the more suitable threshold for 

this study. Thus, we discarded all the scenes with more than 75% of cloud cover, 

preventing unnecessary processing caused by scenes with high cloud cover (NoData). 

Considering the metadata of processing level, we discarded scenes classified into 

L1GT (without precision correction) and L1GS (without terrain correction), using all 

remaining scenes available in the L1TP level (precision, terrain, geometric and 

radiometric corrections). We used this filtered list to build a request containing 4180 

Level-2 scenes (surface reflectance) from 1985 to 2018 and downloaded them from 

Earth Resources Observation and Science- Center Science Processing Architecture 

(EROS-ESPA, https://espa.cr.usgs.gov/). Using the images, we calculated the same 

spectral indexes used to build our spectral library (Table 3) and stacked them as 

different bands into each one of the downloaded scenes. 

For each scene, we used the final model to run per-pixel burned area and 

LULCC classification, being a value from 1 to 8 associated to each pixel as a result. 

These values from 1 to 8 correspond to the byte code of the predicted class (Table 1). 

Finally, using these classified scenes as input, we performed the binarization of the 

burned area class (1= burned area, 0= unburned – all other classes from 2 to 8). These 

binarized burned area data were written in new raster files containing the same 

metadata as the original scenes. 

2.7. Burned area validation 

Validation is the term used to refer to the process of assessing the accuracy of 

a product by comparing with an independent reference data (Roy & Boschetti, 2009). 

In the context of this article, we used the selection of representative places in space 

and a random design in time to assess the transferability of the classifier to regions 

outside the training data scope. In this way, we established four plots of 270 km² each 

(15 x 18 km) in different path/rows considering land-cover and land-use variations in 

São Paulo state (Figure 6, Table 5) and generated an independent validation dataset 

by performing the manual vectorization of burned areas over 59 cloud-free scenes 

across four random years (Supplementary Table S2). 

https://espa.cr.usgs.gov/


 

Figure 6. MapBiomas land cover for the validation plots in the year of 2018. A. Franco da 

Rocha – path 219/ row 76; B. Itirapina – 220/75; C. Rancharia – path 222/76 and; D. Tanabi – 

path 221/74. 

Table 5. Landscape description and considered years for validation in each site. 

Validation plot Years Description 

Franco da Rocha 

1995 

2003 

2017 

2018 

Densely populated suburban area inserted in São Paulo capital 

city urban zone (> 1 million inhabitants). This area presents 

highly rugged relief mainly covered by “Serra do Mar” Atlantic 

rainforest. However, few pasture areas are observed on the 

landscape and open Cerrado “campo sujo” fragments occur in 

the Juquery state park. 

 

Itirapina 

1985 

1988 

2015 

2018 

This area represents the biggest open Cerrado “campo limpo” 

and “campo sujo” remnants of São Paulo state, located at the 

Itirapina Ecological Station (~2200 ha). Outside the protected 

area, the landscape is dominated by cattle grazing, forestry and 

sugar-cane plantations. Some wetlands divide space with a rich 

drainage system, small urban zones (< 20 000 inhabitants), 

highways and railways. 

 



Rancharia 

1985 

2001 

2017 

2018 

This area corresponds to a transition between Cerrado and 

Atlantic rainforest. The validation plot includes a rural zone 

dominated by semi-perennial croplands of bean, soybean and 

corn. Small fragments of Atlantic rainforest remnants are 

maintained by farmers as a legal requirement by the National 

Forest Code (National Law 12 651 / 2012).   

 

Tanabi 

1995 

2006 

2016 

2018 

Regional hub in sugar and ethanol industrial production. 

Landscape is dominated by sugar-cane croplands with small 

rivers and some riparian forests. As well as the Rancharia area, 

here there are small fragments of “cerradão” and Atlantic 

rainforest maintained under legal requirement while the Cerrado 

area has been converted into pastures. Tanabi’s urban zone (< 

25 000 inhabitants) was included in the validation plot.  

We used the date metadata (yyyy-mm-dd) to match and overlap the manually 

mapped vectors and the binarized rasters of burned area generated by our algorithm. 

Then, a confusion matrix was computed to compare each one of the spatial and 

temporal matches; in other words, we estimated and stored in a database the kappa 

index (eq. 2), omission error (OE – eq. 3) and commission error (CE – eq. 4) for each 

one of the comparisons between references vs. predictions. We used this database to 

calculate the mean value of these metrics for each one of the validation plots (eq. 5) 

and assumed the result as a representative value of the spatio-temporal product 

quality. Furthermore, the quality assessment of the product provided by the validation 

was used to delineate the post-processing routine in order to improve the product 

accuracy. 

𝑂𝐸 =
∑ 𝐹𝑁

𝑛(𝑅)  
 

eq.3 
FN= false negative; n= total population; R= reference 

𝐶𝐸 =
∑ 𝐹𝑃

𝑛(𝑃) 
 

eq.4 
FP= false positive; P= predicted  

�̅� =
∑ 𝑥𝑖 (𝐾𝑎𝑝𝑝𝑎; 𝑂𝐸; 𝐶𝐸)

𝑛
𝑖=1

𝑛(P ~  𝑉𝑃)
 

Pr= predicted; ~ in each; VP= validation plot 

eq.5 



2.8. Post-processing 

As a standard procedure, we used the date metadata to match and mask (into 

NoData) any pixels detected as radiometric saturation, cloud, cloud shadow and water 

in the binarized burned area product by using the Landsat Quality Assessment Band 

(QA). For precaution, we applied restrictive thresholds in the QA parameters, being 

masked all the pixels (and also their adjacencies) that presented any of the previous 

described anomalies, independently of the confidence level. 

Considering that our gray concrete spectral signatures is mainly composed by 

urban-zones and sparse buildings, since our aim is to generate a product to assess the 

ecosystem fire patterns, we decided to mask all the urban-zones.  In this way, the 

MapBiomas Brasil project (collection 4.1) offers an accurate yearly classification of 

land-cover for the Cerrado by performing Landsat scenes classification (Alencar et al., 

2020). Thus, we used the "urban-infrastructure" class from the MapBiomas products to 

mask our binarized burned areas. Besides that, we also used the "mining", "beach" 

and "rocky-outcrop" MapBiomas classes (employing our empirical knowledge that 

these classes don't burn) to mask our data. 

Due the earth's movements (e.g. rotation, translation) the sun-earth inclination 

angle change across the seasons, and so the extent of the mountain shadows 

projected over the land surface accompany this variation (Giles, 2001). Previous 

studies focused in scene classifications have reported that the spectral mixture caused 

by the projection of mountain shadows over the surface of highly sloped areas can 

induce several misclassifications (Y. Chen et al., 2018; Giglio et al., 2015; Paul, 1997). 

In this way, we obtained the AWD3D30 v1.1 ALOS Digital Surface Model (Jaxa, 2020) 

from the Google Earth Engine library and derived the terrain slope for São Paulo state. 

We binarized slope rasters (1= slope greater than x, 0= slope  less than x) by 

considering different  slope thresholds (x= 10°, 20°, 30° and 40°) and tested how the 

terrain masking can improve or degrade the product quality of the burned area product 

in the context of this study.   

Finally, to improve the consistency and the product quality, we assume that 

isolated pixels classified as burned area (without neighbor pixels classified as burned 

area) have a great chance to be misclassifications. To test this premise we 

implemented a "minimum spatial contiguity" filter based in the count of pixels classified 

as burned area that share their borders. Thus, we tested the effects in the product 



accuracy by masking burned area pixel aggregations less than 5 pixels (0.45 ha), 11 

pixels (0.98 ha) and 16 pixels (1.44 ha) and compared them to the product without 

spatial contiguity filter (considering alone pixels as valid burned areas). 

2.9. Final product compilation 

After applying the post-processing steps and finding the best parameters for the 

masks and filters by balancing the omission and commission errors, we retrieved the 

gregorian date (yyyy-mm-dd) for each year. Final product was serialized by year ~ 

path/row and resulted in a library of 309 raster files in .tif format. The file names were 

built to store the burned area product metadata as text strings, being: i) the WRS-2 

path [path] and WRS-2 row [row] as spatial descriptors inside the same separator 

[path+row]; ii) the gregorian year as temporal descriptor [yyyy] and; iii) the abbreviation 

of a short product description and the version number [jdba1], equivalent to "julian day 

of burned area detection, version 1". This metadata were compiled so that the final file 

names presented the format "pathrow_yyyy_jdba1.tif" (e.g. 22075_1985_jdba1.tif, 

21976_2018_jdba1.tif, etc.). 

3. Results and Discussion  

3.1. Hyperparameters tuning and model selection 

3.1.1. Multivariate Adaptive Regression Spline – MARS  

We detected a positive effect of the hyperparameter maximum number of terms 

(nprune) in the models accuracy. Lower accuracies were observed by using low nprune 

values (ACC ranging from 0.324 to 0.402 when nprune = 2), independently of the 

product degree (degree). As new MARS models have been trained by increasing the 

number of terms, we observed strong gains in the accuracy until the nprune value = 15 

(ACC ranging from 0.813 to 0.845) (Figure 7). This result points that despite the number 

of terms having largely contributed to the accuracy gain, this gain has a tendency to 

saturate since a threshold, being all the addition of complexity since this point 

responsible for a overwhelm of the model. This saturation pattern was statistically and 

empirically demonstrated by Kuhn & Johnson, 2013 and also reported as result from 

other studies that have tuned MARS models to make forecasts (Ferlito et al., 2017; Li 

et al., 2019). 



 

Figure 7. Multivariate Adaptive Regression Spline (MARS) hyperparameters tuning. Colored 

lines represent models considering different product degrees. The number of terms 

hyperparameter (nprune) was represented in the x-axis while the y-axis points the models 

accuracy. 

On the other hand, although in small proportion in relation to the total number 

of terms, the product degree has affected the models accuracy. While the addition of 

terms has induced accuracy gains, the addition of product degrees has negatively 

affected the models by degrading the accuracy. In other words, independently of the 

number of terms in the model, greater values of accuracy were observed when only 

first order interactions between variables are allowed (degree = 1), while less accuracy 

was found when increasing the product degree. The combined effects of both 

hyperparameters can be easily observed in Figure 8, since the results showed a 

graphical ordered pattern. Finally, the largest accuracy value (ACC= 0.845, Kappa = 

0.823) was used to select the optimal MARS model (nprune = 20 and degree = 1).  

3.1.2. Random Forest – RF  

We started by training an exploratory RF model using an approximation of the 

default value for the number of variables randomly sampled as candidates at each tree 

split (mtry = √𝑛. 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 = √6 𝑆𝑅 𝑏𝑎𝑛𝑑𝑠 + 11 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑖𝑛𝑑𝑒𝑥 = 4.12, rounded to 4). On 

one hand if a low number of trees are related to poor final classifiers, on the other a 

large number of trees are generally related to a model overwhelm and to unnecessary 

computation (Oshiro et al., 2012). Since no default value is available to the ntree 



hyperparameter, we rely on literature and set our initial candidate value as 750, an 

approximation of the optimal ntree value reported by Ramo & Chuvieco, 2017 to 

perform MODIS burned area classification.  

Interestingly, a high value of accuracy (ACC= 0.976, Kappa= 0.971) was 

obtained from this exploratory model. Even when the model considered only a unique 

tree, a relatively high value of accuracy was obtained (ACC= 0.952). However, 

increasing in the accuracy of all the classes was observed in the window by ensembling 

from 5 to 100 trees (Figure 8). From this point on, an average accuracy of 0.975 was 

reached and a tendency of stabilization was detected for all the classes, except for the 

harvest class, where a small increase of accuracy (< 0.02) occurred until the 750th tree.  

Since we reached a global threshold of accuracy gain (and also individual for 

all the classes), we assume that the input of more trees in the training is 

computationally unnecessary, since no more significative accuracy gains shall be 

observed. Thus, despite the optimal value for the number of trees can be any value 

since the accuracy stabilization threshold (around the 100th tree), considering the 

computational context of having already trained a stabilized model, we used this 

classifier and assumed 750 trees as our optimal ntree value in the context of this study.   

 

Figure 8. Random Forest (RF) number of trees tuning. Colored lines represent the accuracy 

error for each one of the classes. Pink link named “Average accuracy” represent the model 

overall accuracy by considering all the classes. The hyperparameter ntree was represented in 

the x-axis (log10 adjusted) while the y-axis points the accuracy value.  

From this point on, we started to evaluate how the set of different values for 

the mtry hyperparameter affects the accuracy. For this, we tested values that 

corresponds to the half (2) and twice (8) of the default value (4). Considering the half 



value of the default, we found that the accuracy presented an insignificant drop (< 

0.001), such as none accuracy gain was observed by twice the default value (ACC was 

held constant in 0.976). Absence of influence of the number of variables randomly 

sampled as candidates at each tree split goes on the opposite direction to that reported 

by studies that have classified optical and radar remote sensing data by using the 

random forest algorithm (Pal, 2005; Ramo & Chuvieco, 2017). Furthermore, other 

studies have related that the accuracy in the random forest was more sensitive to the 

mtry tuning than to the number of trees (Belgiu & Drăgu, 2016; Ghosh & Joshi, 2014; 

Topouzelis & Psyllos, 2012). However, Catal & Diri, 2009 have reported that the 

behavior of the accuracy in RF can be dependent from the dataset size and feature 

selection methods (based on predictors relationships). Thus, our results point that the 

structural particularities from our dataset can be induced by the prioritization of the 

ntree in relation to mtry.  

3.1.3. eXtreme Gradient Boosting – XGB  

We report that the subsample ratio of columns (colsample_bytree), shrinkage 

(eta) and subsample (subsample) did not showed determinant effects on the accuracy 

values, having only small variations (< 0.01) being observed by ranging the set of 

values proposed in the search grid (see Table 4). As reported by Joharestani et al., 

2019, the number of allowed boosting iterations (nrounds) and the maximum tree depth 

(max_depth) appears to be the more sensitive to XGB hyperparameters. This way, we 

detected a positive relationship with the accuracy by increasing the values into each 

one of these parameters (Figure 9).  



 

Figure 9. EXtreme Gradient Boosting (XGB) hyperparameters tuning. Colored lines represent 

models considering different maximum tree depth ("max_depth”). The labels inside colored 

upper boxes on each plot refers to the values provided to the subsample ratio of columns 

(colsample_bytree), shrinkage (eta) and subsample percentage (subsample). The x-axis 

represents the number of boosting iterations (nrounds) while the y-axis points the models 

accuracy. 

Previous studies that have assessed the performance of classification 

algorithms by comparing XGB vs. RF models pointed that an optimal parameterized 

XGB tends to outperform RF models (Georganos et al., 2018; Naghibi et al., 2020; 

Joharestani et al., 2019). However, tuning the hyperparameters into the XGB algorithm 

is more difficult than MARS and RF algorithms for the simple reason that the first has 

3.5 times more parameters to be set. Since the number of possible combinations 

between candidate values is a function of the number of candidate values in each 

parameter (NCV) raised to the total number of hyperparameters to be set (7) (𝑁𝐶𝑉7), 

the delineation of a detailed search grid can demand the training of thousands of 

models. For example: a search design that considers the input of 5 candidate values 

for each one of the parameters needs to train 78,125 models, making the search for 



the optimal hyperparameters a heuristic process that depends of computational 

resources availability for a long period of time.  

Given that, we report that despite the optimal XGB model having reached less 

accuracy than the optimal RF model (- 0.063) (Table 6), this result is biased by our 

decision to end the XGB parameterization before the stabilization of the accuracy gain. 

Since a small range of eta and colsample_bytree values were tested and no saturations 

in the accuracy were detected by increasing the nrounds and the max_depth until the 

tested limits, a new set of values could have been supplied as new candidate values 

by following the conceptions of the Nelder-Mead method (Olsson & Nelson, 1975). 

However, since this heuristic search process would consume much more processing 

time and we had already reached an accuracy that we considered satisfactory in the 

context of this study by using the RF algorithm, we decided to end the tuning of 

hyperparameters and make a better use of the research time by processing and 

validating a high quality final product. 

Table 6. Optimal hyperparameters and accuracy measurements for each algorithm. Size (GB) 

refers to the size (expressed in gigabytes) of trained models when exported as .RData files. 

Gray shadow points the best model obtained from the k-fold cross validation.  

Algorithm Hyperparameters Accuracy Kappa Size (GB) 

RF mtry = 4; ntree= 750 0.976 0.971 0.536 

XGB nrounds= 150; max_depth= 3; 

eta = 0.4; gamma =0; colsample_bytree= 

0.8; min_child_weigth= 1; subsample= 0.75 

 

0.913 0.900 0.310 

MARS nprune= 20; degree= 1 0.845 0.823 19.198 

3.1.4. Final model selection  

Given the previous steps, we performed the classification of our test dataset 

(30% of the spectral library) by using the optimal model of each algorithm.  Only small 

variations were observed when comparing the accuracy results from the training k-fold 

cross validation (see Table 6) and test dataset (Table 7). Thus, we confirmed our 

hypothesis number ii (RF and XGB > MARS) and used the largest value of accuracy 

(ACC= 0.982) to select the RF as the final model to be applied in the classification. 

Table 7.  Accuracy measurements of the test dataset classification for each algorithm. 95% C.I 

refers to the accuracy 95% confidence interval. Grey shadow points the selected final model 

by considering the largest values of accuracy and Kappa.   

Algorithm Accuracy 95% C.I Kappa 

RF 0.982 0.981 – 0.983 0.979 

XGB 0.913 0.912 – 0.914 0.900 



MARS 0.856 0.855 – 0.857 0.835 

3.2. Predictors importance 

Inspecting the spectral library ordination by performing a principal component 

analysis (PCA – Figure 10), we detected that the loadings of surface reflectance bands 

have largely influenced the scores from bare soil, and in a lesser extent, from the gray 

concrete. As expected, spectral indexes sensible to vegetation features (NDVI, GNDVI, 

SLAVI, MSAVI) largely influenced the ordination of green cover, such as the burned 

area indexes (BAIM, CSI, NBR) were largely responsible for the burned area class 

scores. Highly divergent classes (green cover, shadow, water) were easily separated 

by the PCA, however, we detected that spectral traits were shared by some of the other 

classes (burned area, harvest, asphalt, gray concrete, bare soil). 

 

Figure 10. Principal Component Analysis (PCA) of our spectral library. Black labels represent 

variable names. Length of black arrows represents the loadings of each variable.   

When comparing the predictors importance inside each one of the optimal 

models obtained from the cross validation, we detected deep differences in which and 

how each model has used the predictors (Figure 11). First, the MARS model used only 

9 of the 17 predictors, prioritizing the use of all the surface reflectance bands (76.6% 

of total importance) and using only 2 of the 11 spectral indexes (NDVI and CSI). On 

the other hand, XGB and RF have used all the predictors, but emphasizing the 

importance of spectral indexes (XGB= 63.1%, RF= 64.8% of total importance). 

Furthermore, we detected a more homogeneous tendency of predictors importance 



distribution by using the RF (standard deviation ± 2.29 %) when compared to XGB (± 

5.23 %) and MARS (± 7.76 %). This result highlights the ability of the RF algorithm in 

considering the combined effects from predictors with high collinearity by dividing the 

importance between them (Genuer et al., 2010), contrary to the non-parametric 

variable selection performed by the MARS (Doksum et al., 2008) and the feature 

selection performed by the XGB (T. Chen & Guestrin, 2016). 

 

Figure 11. Predictors’ importance radar plot. Black labels around the plot represent each one 

of the predictors used in the models training. Starting from the center (0%) and going to the 

outer edge (> 15%), the red labels inside the plot shows the relative importance for each 

predictor. Colored lines/polygons represent the implemented algorithms: Random Forest (dark 

green), eXtreme Gradient Boosting (magenta) and Multivariate Adaptive Regression Spline 

(brown).   

Inspecting the confusion matrix of the test dataset by using the optimal models, 

we found a poor performance of MARS and XGB to make correct predictions of classes 

with high spectral mixture (asphalt, gray concrete and harvest), being these classes 

frequently misclassified among themselves or in burned area (Figure 12). Despite the 

spectral reflectance bands being often used to perform LULCC and burned area 

classification by other studies, better results were reported by adding spectral indexes 

(Bastarrika et al., 2011; Hayes et al., 2014). Many studies have reported that the NDVI 

and CSI enhances the classification of vegetation and burned area, respectively  (Jia 

et al., 2014; Shao et al., 2016; Smith et al., 2007; Stroppiana et al., 2012). However, 

the non-consideration of the other spectral indexes and the emphasis in the surface 

reflectance bands probably have induced the several observed classification errors for 

the MARS algorithm.  



 

Figure 12. Distribution of total errors by predicting the test dataset. Black labels upper each 

plot represents the employed algorithm. The y-axis indicates the reference classes while the 

x-axis points the relative frequency of error per class. The error bar of each reference class is 

colored to represent the frequencies of wrong predicted classes 

Although the XGB has attributed 63.1% of the variables importance to spectral 

indexes, these value is biased by the high importance lead by MIRBI (18.6%) and 

GNDVI (15.8%) while the average importance of all the other spectral indexes was 

around 3.2%. By comparing MARS and XGB, this behavior represents an importance 

reduction of the surface reflectance bands and an explicit replacement from CSI to 

MIRBI and from NDVI to GNDVI. Thus, XGB have reduced the classification errors 

from all the classes, but remained maintaining the same tendencies and biases that 

MARS. 

On the other hand, the balanced use of surface reflectance bands and spectral 

indexes predictors in the RF practically zeroed the asphalt and gray concrete errors. 

Furthermore, misclassifications were largely reduced in bare soil (error= 6%), harvest 

(error= 5%) and burned area (error= 4%). Thus, our result suggests that the distribution 

of importance among highly collinear predictors have improved the machine learning 

capabilities in the RF, making possible that this algorithm reached a higher accuracy 

(98%).   

3.3. Burned area validation   

We applied the final RF model (Table 6) to perform the landscape classification 

of the selected validation scenes (Supplementary Table S2). We performed the burned 

area class binarization (1= burned, 2= unburned, all the classes from 2 to 8, see Table 

1) and masked these results by applying the BQA band.  



Considering the average performance of the RF model to predict burned areas 

into all the validation plots, first insights about the quality of this raw product showed 

an average kappa index of 0.53, being the average commission error (CE= 0.50) and 

average omission error (OE= 0.12). Despite the mean omission error being low in all 

the validation plots (OE - Franco da Rocha= 0.15, Itirapina= 0.12, Tanabi= 0.14, 

Rancharia = 0.05), high values of commission errors were observed in all the validation 

plots (CE – Franco da Rocha= 0.76, Itirapina= 0.50, Tanabi= 0.44, Rancharia= 0.30). 

We assumed that a mean omission error of 0.12 (lower= 0.05, upper= 0.15) is 

acceptable in the regional scope of this study and so we centered our efforts in 

delineating a post-processing protocol to promote the CE reduction. Inspecting our 

results, we found that pixels that correspond to buildings and roads were not always 

properly classified by our algorithm, being frequently mapped as burned area (Figure 

13A). Thus, we confirmed our hypothesis iii and used this impressions as a starting 

point to delineate the post-processing. 

First, we decided to mask the infrastructures, cities and roads due this high 

commission error rate. In this way, a highly accurate urban zones classification (IRS – 

5 m/pixel) is available into DATAGEO (São Paulo state geospatial data repository - 

http://datageo.ambiente.sp.gov.br/). However, these official data refers only to a static 

snapshot from the time (2005). Since urban infrastructure is constantly changing, we 

need to include urban-zones data that considers these changes. For this, the 

MapBiomas Brasil project offers a multi-temporal collection of land cover and land use 

changes (LULCC) for the entire Cerrado in Landsat resolution (Alencar et al., 2020). 

We used the urban-infrastructure MapBiomas class to mask our burned area product 

(Figure 13B). Besides that, considering that “rocky outcrop”, “mining” and “beach” are 

available into MapBiomas product (and we know that these classes don’t burn), we 

also masked these classes in our product since much of these is frequently related to 

commission errors in burned area classifications (Koutsias & Karteris, 2000; Mitri & 

Gitas, 2004; Oechsle & Clark, 2008). 

http://datageo.ambiente.sp.gov.br/


 

Figure 13. Franco da Rocha, 2018-08-30. A) Raw burned area product (only BQA applied).  

Black polygons represent our reference burned area dataset. Red colored pixels represent 

pixels classified as burned area by the RF model. B) Burned area product masked using 

MapBiomas (pink). We used a high resolution scene from ESRI Imagery as background in both 

figures.  

After applying the MapBiomas mask, we observed CE decrease in all the 

validation plots. Franco da Rocha as shown the biggest drop in CE (-0.22), while 

Itirapina (-0.03), Tanabi (-0.01) and Rancharia (-0.01) presented quasi-neutral CE 

reduction, probably due to absence of dense urban-zones in these validation plots. 

Considering OE increase as a collateral effect of product masking, we detected small 

increases from 0.01 to 0.02 in all the validation plots. Since CE drop and OE gain were 

balanced for all the validation plots, the higher CE drop in Franco da Rocha has been 

driven an average Kappa gain from 0.53 to 0.58. 

Applying different derived slopes from ALOS AW3D30 product has not reduced 

CE more than 0.01 in none of the validation plots. On other hand, we detected that OE 

is sensitive to the restriction level from slope mask, namely, the more restrictive was 

the slope mask, bigger was the OE increase (Figure 14), especially in Franco da 

Rocha. Observing that the CE and OE was balanced (± 0.01) until intermediate degree 

slopes, we decided to maintain the slope mask (30º) as a post-processing step. We 

assume that despite the neutral influence in our validation plots, the slope mask can 

be useful to improve the product quality in other rough relief areas that were not 

considered in this validation scope but occur in the study area.  



 

Figure 14. Cumulative performance of tested masks into each validation plot. The x-axis shows 

the cumulative effect of the different masks (e.g. “Slope 30º” refers to the result obtained by 

combining “BQA + MapBiomas + Slope 40 º + Slope 30 º”). Colored lines represent the CE 

(red), OE (black) and Kappa index (green). Dark blue rectangle points the selected combination 

of masks. Average performance (E) was computed by considering the mean from the results 

into the four validation plots. 

 When comparing the average results from combined masks (Landsat BQA + 

MapBiomas + Slope 30) with our first product (only BQA mask), we reported a CE 

decrease from 0.50 to 0.43 (-0.07) and a Kappa increase from 0.53 to 0.58 (+ 0.04). 

We observed stable CE and OE variations across masking for all the validation plots, 

except on Franco da Rocha, where a high CE reduction was observed from 0.76 to 

0.54 (-0.22). However, higher CE than Kappa continued to be observed in Franco da 

Rocha (Kappa= 0.47, CE= 0.54) and Itirapina (Kappa= 0.46, CE= 0.47).  

We observed that the remaining errors were distributed in a wide range of 

contexts. Even applying a restrictive filter to the Landsat BQA mask, we report that 

some small water masses, sparse clouds and their shadows were not masked. Many 

of these unmasked pixels corresponded to the spectral mixture between water-

vegetation, water-soil, shadow-vegetation and shadow-soil, being frequently classified 



as false-positive burned areas. The MapBiomas mask showed a good performance to 

mask false-positive burned areas in dense urban zones. However, the false-positive 

burned areas that corresponded to sparse buildings, rural communities and small 

settlements were not properly masked by MapBiomas. Besides that, São Paulo state 

has a dense transport infrastructure (railroads and highways) being these also not 

masked by MapBiomas and related to false-positive burned areas.  

Although the error tendencies varied between a wide ranges of contexts, we 

identified a pattern that joined all these contexts: the absence of spatial contiguity. In 

other words, while burned areas that have been classified correctly showed high spatial 

contiguity (higher pixels aggregation), the false-positive burned areas presented low 

spatial contiguity, occurring much of the times restricted to alone pixels or aggregations 

less than ten pixels. Thus, we decided to use the spatial contiguity as a parameter and 

performed a test of filters considering different numbers of minimum pixels in an 

aggregation to promote the false-positive burned areas masking. 

Strong CE drops were detected with the lowest spatial contiguity filter (5 pixels 

or ~0.5 ha) (Figure 15). Considering the average performance (Figure 15E) we report 

a reduction in the CE from 0.43 (all previous combined masks) to 0.17 (0.5 ha filter). 

Contrary to the previously tested masks that have contributed to minimize CE only in 

specific validation plots, the spatial contiguity filter has decreased CE in all the 

validation plots (Figure 15A, B, C, and D), pushing up the average performance Kappa 

from 0.57 to 0.76.  When we apply more restrictive parameters to spatial contiguity filter 

by increasing the minimum number of connected pixels (11 pixels = ~1 ha, 17 pixels = 

~1.5 ha), we observed CE reduction in all the validation plots. However, a tendency of 

CE stabilization was detected since the spatial contiguity of ~ 1ha (11 pixels). On the 

other hand, the OE presented tendency to increase in all the validation plots when more 

restrictive spatial contiguity parameters were provided (Figure 15).  



 

Figure 15. Performance of tested masks into each validation plots. The x-axis shows the 

cumulative effect of the different masks (e.g. “1 ha” refers to the result obtained by combining 

“BQA + MapBiomas + Slope 30 º + mask all burns less than 0.5 ha + mask all burns less than 

1 ha”). Colored lines represent the CE (red), OE (black) and Kappa index (green). Dark blue 

rectangle point the selected combination of masks. Average performance (E) was computed 

by summarizing the mean from the results into the four validation plots. 

Inspired in the MODIS burned area products strategy of error balancing (Giglio 

et al., 2015), we assume kappa > OE > CE as our error balancing strategy. In one hand 

we guarantee the maximum spatial correspondence by selecting the mask parameters 

with the highest kappa values. On the other hand, by prioritizing a higher OE than CE 

we guarantee that our burned area product is ever omitting more than committing, 

minimizing the risk of poor inferences in regional environmental analysis. Thus, we 

selected the spatial contiguity filter of ~1 ha (11 pixels of spatial contiguity using rook’s 

adjacency criterion – kappa = 0.79, CE= 0.09, OE= 0.16) as threshold and all fire 

scares below this value were excluded. 

We detected that many of the previously mentioned error tendencies were 

corrected by the spatial contiguity filter. First, many of the sparse buildings wrongly 

classified as burned area by our algorithm were being masked (Figure 16A, B) as well 



as the spectral mixtures between water-soil and water-vegetation interfaces (Figure 

16C, D).   

 

Figure 16. Franco da Rocha, 2018-08-30. Black polygons represent our reference burned area 

dataset. Red colored pixels represent pixels classified as burned area by our algorithm. Pink 

colored pixels represent the false-positive burned areas masked by MapBiomas. Yellow 

colored pixels represent the false-positive burned areas masked by minimum contiguity filter. 

Left boxes (A and C) show representative plots before the run of the minimum contiguity filter. 

Right boxes (B and D) shows the results of minimum contiguity mask by using the selected 

value (~ 1ha).  We used a high resolution scene from ESRI Imagery as background in both 

figures.  

Second, the native Cerrado grasslands (“campo limpo” and “campo sujo”) 

shows intensive phonological variations: a greenness peek into the mid wet-season 

and a high dehydration in the late dry season, making the spectral response of these 

areas in the late dry season a mixture of dry organic matter and a quartzarenic soil with 

high reflectance brightness. These pixels were frequently classified as false-positive 

burned areas (Figure 17A). However, these errors were successfully masked by the 

minimum spatial contiguity filter (Figure 17B). Like the sparse buildings, other small 



anthropic infrastructures (like roads, highways and railways) were also wrongly 

classified as burned areas (Figure 17C). Since these anthropic infrastructures are 

small-sized when compared to Landsat scale, all the false-positive errors caused by 

this pattern were easily removed by applying the minimum spatial contiguity filter 

(Figure 17D). Finally, we assume that the accuracy (kappa = 0.79) and errors (CE= 

0.09, OE= 0.16) of our burned area product is balanced to make possible future 

regional scale environmental analysis, validating our hypothesis iv. 

 

Figure 17. Itirapina, 2015-08-29. Red colored pixels represent pixels classified as burned area 

by our algorithm. Pink colored pixels represent the false-positive burned areas masked by 

MapBiomas mask. Yellow colored pixels represent the false-positive burned areas masked by 

minimum contiguity filter. Left boxes (A and C) show representative plots before the run of the 

minimum contiguity filter. Right boxes (B and D) show the results of minimum contiguity mask 

by using the selected value (~ 1ha).  We used a high resolution scene from ESRI Imagery as 

background in both figures.  

3.4. Final product and data access 



We developed an R-Shiny web-application (Figure 18) to provide free access 

and navigation into our results by municipality or protected area in an interactive map 

(https://bit.ly/FireLandSP2). Interactive exploratory graphics were included and are 

recalculated every time that the end-user change spatial or temporal filters. We also 

implemented interactive buffer zone filters around protected areas to allow the users to 

inspect and assess possible human pressures near each protected area. Tools to 

enable the end-users to report the errors and implement their own improvements in the 

product are also planned and under development. Thus, by using our product as 

starting point, we pretend to launch the first collaborative Cerrado's burned area 

mapping platform. 

 

Figure 18. Graphical user-interface (UI) to access, visualize and analyze the final product.  

3.5. Known issues and future development 

Despite our efforts to provide a highly accurate product in regional scale, we 

detected some issues and biases that can affect analyses in local scale. Inspecting the 

final product outside our validation scope, we found that some large infrastructures 

(e.g. steel and petroleum industries) were not masked by the post-processing steps, 

being wrongly classified as burned area (Figure 19A, B). Several commission errors 

were also observed into managed floodplains for agriculture (e.g. rice, vegetables) 

(Figure 19C, D) and native floodplains locally known as “campo úmido” or “várzea” 

(Figure 19E, F). Thus, we report that local applications of this product by end-users 

need to be inspected and, if necessary, supervised by performing the necessary 

improvements.  



 

Figure 19. Known issues of the final product. All the figures refer to municipalities from São 

Paulo state and for burned area classifications from the year of 2018. A/B. Cubatão – 

“Siderúrgica Usiminas”; C/D. Mogi das Cruzes – Vegetable garden complex; E/F. São Carlos 

– Native floodplain “campo úmido de várzea”. We used a high resolution scene from ESRI 

Imagery as background in both figures.  

Another important aspect to be mentioned refers to the Landsat temporal 

resolution and their scenes availability. Post-fire vegetation responses over tropical 

savannas, like Cerrado, are quick and occur only a few months after the disturbance 

(Bowman et al., 2009; Coutinho, 1990). We point that despite the revisit of Landsat 

imagery occurs every 16 days, the availability of cloud-free scenes for the study area 



was rare (Supplementary Fig S1). So even if we have used scenes with until 75% of 

cloud-cover, it is possible that some burn scars have not been imaged before the 

vegetation recovery due the constant cloud-cover in repeated Landsat scenes, thus 

being invisible to Landsat sensors when employed alone (Alves et al., 2018; 

Veraverbeke et al., 2011). Furthermore, our training data of burned area considers a 

wide range of burn scars with different contents of ash presence. That is, if the ash 

spectral signal disappear from the terrain surface as a result from the rain and wind, 

this pixel probably would be misclassified as bare soil (Pereira, 2003; Trigg & Flasse, 

2001). Thus, we report that applications of our product to analyze open Cerrado 

patches (“campo úmido”, “campo limpo”, “campo sujo”) in local contexts need to be 

conducted with caution, if possible by using field data and empirical knowledge from 

the locals.  

In this way, future versions of this algorithm will be developed by combining 

harmonized Landsat and Sentinel-2 imagery with the community contributions inside 

the Cerrado's collaborative burned area mapping platform. Thus, by summing efforts, 

we believe that the challenge of mapping burned areas in the highly anthropized 

cerrado can be overcome. 

4. Conclusion  

This study presented a reproducible methodology to generate a burned area 

algorithm by tuning and comparing different machine learning algorithms. In general, 

machine learning algorithms performed well to classify the LULCC and burned area in 

highly anthropized landscapes. RF was proved to be a better classifier than XGB and 

MARS, being used to classify and extract the burned area from a dense Landsat time-

series. An adaptative post-processing have been implemented to balance omission 

(OE) and commission errors (CE) by using the strategy OE > CE, so that the final 

product showed to have quality to be employed in regional analysis (Kappa= 0.79).   

This study generated the first burned area open dataset for the highly 

anthropized Cerrado. We recognize that this is only the first step, since some issues 

were reported in the known issues section and some improvements are necessary. 

However, we consider that this product represents many solid advancements in the fire 

mapping for the highly anthropized Cerrado’s since no burned area data are available 

in regional scale for this context. Besides that, this study launched the first Cerrado’s 

collaborative burned area mapping platform, providing free and instant access to our 



data and glimpsing that the challenge of mapping burned areas in complex contexts 

needs to be shared and overcome collectively.     
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Supplementary 

Suplemmentary Fig S1. Landsat scenes availability using different cloud cover thresholds. 

 

 

 

 

 

 

 



Supplementary Table S2. List of scenes used in the product validation  

Validation plot Scene list 

Franco da Rocha LT05_L1TP_219076_19951002_20170106_01_T1 

LT05_L1TP_219076_20030922_20161204_01_T1 

LT05_L1TP_219076_20031024_20161203_01_T1 

LC08_L1TP_219076_20170624_20170713_01_T1 

LC08_L1TP_219076_20170726_20170810_01_T1 

LC08_L1TP_219076_20170827_20170914_01_T1 

LC08_L1TP_219076_20170912_20170928_01_T1 

LC08_L1TP_219076_20180424_20180502_01_T1 

LC08_L1TP_219076_20180510_20180517_01_T1 

LC08_L1TP_219076_20180830_20180911_01_T1 

Itirapina LT05_L1TP_220075_19850319_20170219_01_T1 

LT05_L1TP_220075_19850420_20170219_01_T1 

LT05_L1TP_220075_19850506_20170219_01_T1 

LT05_L1TP_220075_19850709_20170219_01_T1 

LT05_L1TP_220075_19850810_20170219_01_T1 

LT05_L1TP_220075_19850911_20170218_01_T1 

LT05_L1TP_220075_19880224_20170209_01_T1 

LT05_L1TP_220075_19880327_20170209_01_T1 

LT05_L1TP_220075_19880701_20170208_01_T1 

LT05_L1TP_220075_19880717_20170208_01_T1 

LT05_L1TP_220075_19880802_20170207_01_T1 

LT05_L1TP_220075_19880919_20170206_01_T1 

LT05_L1TP_220075_19881106_20170205_01_T1 

LT05_L1TP_220075_19881208_20170205_01_T1 

LC08_L1TP_220075_20150117_20180528_01_T1 

LC08_L1TP_220075_20150202_20170413_01_T1 

LC08_L1TP_220075_20150423_20170409_01_T1 

LC08_L1TP_220075_20150509_20170409_01_T1 

LC08_L1TP_220075_20150525_20170408_01_T1 

LC08_L1TP_220075_20150610_20170408_01_T1 

LC08_L1TP_220075_20150728_20170406_01_T1 

LC08_L1TP_220075_20150813_20170406_01_T1 

LC08_L1TP_220075_20150829_20170405_01_T1 

LC08_L1TP_220075_20151016_20170403_01_T1 

LC08_L1TP_220075_20180314_20180320_01_T1 

LC08_L1TP_220075_20180517_20180604_01_T1 

LC08_L1TP_220075_20180618_20180703_01_T1 

Tanabi  LT05_L1TP_221074_20060726_20161120_01_T1 



LT05_L1TP_221074_20060811_20161119_01_T1 

LT05_L1TP_221074_20060912_20161118_01_T1 

LC08_L1TP_221074_20160416_20170326_01_T1 

LC08_L1TP_221074_20160502_20170325_01_T1 

LC08_L1TP_221074_20160721_20170323_01_T1 

LC08_L1TP_221074_20160923_20170321_01_T1 

LC08_L1TP_221074_20161009_20170320_01_T1 

LC08_L1TP_221074_20180422_20180502_01_T1 

LC08_L1TP_221074_20180508_20180517_01_T1 

LC08_L1TP_221074_20180625_20180704_01_T1 

LC08_L1TP_221074_20180727_20180731_01_T1 

LC08_L1TP_221074_20180913_20180928_01_T1 

Rancharia LT05_L1TP_222076_19850128_20170219_01_T1 

LT05_L1TP_222076_19850605_20170219_01_T2 

LT05_L1TP_222076_19850824_20170218_01_T1 

LT05_L1TP_222076_19850909_20170218_01_T1 

LT05_L1TP_222076_19851112_20170218_01_T1 

LT05_L1TP_222076_20010905_20161211_01_T1 

LT05_L1TP_222076_20011007_20161210_01_T1 

LT05_L1TP_222076_20011226_20161210_01_T1 

LC08_L1TP_222076_20170512_20170525_01_T1 

LC08_L1TP_222076_20170715_20170727_01_T1 

LC08_L1TP_222076_20170901_20170915_01_T1 

LC08_L1TP_222076_20180515_20180604_01_T1 

LC08_L1TP_222076_20180531_20180614_01_T1 

LC08_L1TP_222076_20180718_20180731_01_T1 

 


